Serotonin modulates voltage-dependent calcium current in Necturus taste cells.
نویسندگان
چکیده
Necturus taste buds contain two primary cell types: taste receptor cells and basal cells. Merkel-like basal cells are a subset of basal cells that form chemical synapses with taste receptor cells and with innervating nerve fibers. Although Merkel-like basal cells cannot interact directly with taste stimuli, recent studies have shown that Merkel-like basal cells contain serotonin (5-HT), which may be released onto taste receptor cells in response to taste stimulation. With the use of whole cell voltage clamp, we examined whether focal applications of 5-HT to isolated taste receptor cells affected voltage-activated calcium current (I(Ca)). Two different effects were observed. 5-HT at 100 microM increased I(Ca) in 33% of taste receptor cells, whereas it decreased I(Ca) in 67%. Both responses used a 5-HT receptor subtype with a pharmacological profile similar to that of the 5-HT1A receptor, but the potentiation and inhibition of I(Ca) by 5-HT were mediated by two different second-messenger cascades. The results indicate that functional subtypes of taste receptor cells, earlier defined only by their sensitivity to taste stimuli, may also be defined by their response to the neurotransmitter 5-HT and suggest that 5-HT released by Merkel-like basal cells could modulate taste receptor function.
منابع مشابه
Membrane properties of two types of basal cells in Necturus taste buds.
Necturus taste buds contain two types of basal cells: presumptive stem cells and Merkel-like basal cells. Both types of basal cells are small round cells located at the base of the taste bud, indistinguishable from each other with light microscopy. However, with electron microscopy, autoradiography, or immunocytochemistry, these two types of basal cells can be easily distinguished. We isolated ...
متن کاملMembrane properties of isolated mudpuppy taste cells
The voltage-dependent currents of isolated Necturus lingual cells were studied using the whole-cell configuration of the patch-clamp technique. Nongustatory surface epithelial cells had only passive membrane properties. Small, spherical cells resembling basal cells responded to depolarizing voltage steps with predominantly outward K+ currents. Taste receptor cells generated both outward and inw...
متن کاملApical localization of K+ channels in taste cells provides the basis for sour taste transduction.
Previous studies have shown that mudpuppy taste receptor cells respond to sour taste stimuli (weak acids) with depolarizing receptor potentials or action potentials that are blocked by the K+ channel blocker tetraethylammonium. Voltage-clamp recordings from isolated taste cells indicated that taste receptor cells exhibit a variety of voltage-dependent conductances and that acids reduce a voltag...
متن کاملApical K+ channels in Necturus taste cells. Modulation by intracellular factors and taste stimuli
The apically restricted, voltage-dependent K+ conductance of Necturus taste receptor cells was studied using cell-attached, inside-out and outside-out configurations of the patch-clamp recording technique. Patches from the apical membrane typically contained many channels with unitary conductances ranging from 30 to 175 pS in symmetrical K+ solutions. Channel density was so high that unitary cu...
متن کاملIdentification of electrophysiologically distinct cell subpopulations in Necturus taste buds
We used the patch clamp technique to record from taste cells in thin transverse slices of lingual epithelium from Necturus maculosus. In this preparation, the epithelial polarity and the cellular organization of the taste buds, as well as the interrelationships among cells within the taste bud, were preserved. Whole-cell recording, combined with cell identification using Lucifer yellow, allowed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 77 5 شماره
صفحات -
تاریخ انتشار 1997